Lysosome Function Analysis - Selection Guide for Detection and Imaging Reagent / Probe / Kit

Science Note

[Dec. 9, 2025]                                                                                                                                                                                                                      Previous Science Note

Lysosome Positioning Shapes Cellular Phenotypes

Lysosomal dysfunction is broadly linked to diseases and aging, and recent work indicates that lysosome positioning also contributes to these states. Changes in localization can influence how cells respond to stress or remodel their surrounding environment. Recent studies highlight this idea: metastatic melanoma cells shift lysosomes to the periphery to enhance invasion, while senescent cells require TIGAR-dependent perinuclear accumulation of lysosomes to maintain SASP. These findings expand the view of lysosomes beyond degradative organelles, emphasizing that their spatial organization can actively shape distinct cellular phenotypes.

1. Peripheral positioning of lysosomes supports melanoma aggressiveness (Nature Communications, 2025)

Summary: This study demonstrates that metastatic melanoma cells reposition lysosomes toward the cell periphery, a spatial reorganization that enhances lysosomal exocytosis, extracellular matrix degradation, and invasive capacity. By forcibly relocating lysosomes back to the perinuclear region, the authors show that invasiveness and metastatic behavior are significantly reduced, establishing lysosome positioning as a causal regulator of melanoma aggressiveness.

Highlighted technique: To test whether lysosome positioning influences melanoma cell behavior, the study used an FKBP–FRB dimerization system to chemically induce binding between LAMP1-tagged lysosomes and a perinuclear motor protein. This method forces lysosomes to relocate from the cell periphery to the perinuclear region, allowing the authors to assess resulting changes in invasive and metastatic behavior. Lysosome localization was visualized by tagging LAMP1 with a fluorescent protein.

 Related technique   Lysosomal Function Analysis, Cell Membrane Staining

2. TIGAR coordinates senescence-associated secretory phenotype via lysosome repositioning and α-tubulin deacetylation (Experimental & Molecular Medicine, 2024)

Summary: Senescent cells exhibit a pro-inflammatory SASP, for which proper perinuclear positioning of lysosomes is critical, but the mechanism controlling this lysosome localization had remained unclear. This study shows that TIGAR is a new key regulator that drives lysosomes to the perinuclear region, and that loss of TIGAR impairs this perinuclear repositioning and markedly reduces SASP, even though cellular senescence itself still occurs.

Highlighted technique: To clarify how TIGAR affects intracellular lysosome transport in senescent cells, lysosome localization in TIGAR knockout cells was visualized by LAMP2 immunofluorescence. Because lysosome positioning can influence autophagic flux, autophagy was additionally evaluated using both Western blot analysis of LC3 and the mRFP–GFP–LC3 reporter assay.

 Related technique   Cellular Senescence Detection, Autophagic Flux Assay

All Related Techniques (click to open/close)
Target Kit & Probes
Lysosomal function Lysosomal Acidic pH Detection Kit -Green/Red and Green/Deep Red
High Specific Lysosommal Detection LysoPrime Green / Deep Red
Lysosomal Acidic pH Detection pHLys Red
First-time autophagy research Autophagic Flux Assay Kit
Mitophagy  detection Mitophagy Detection Kit
Endocytosis Detection ECGreen-Endocytosis Detection
Cellular senescence detection SPiDER-βGal for live-cell imaging or flow cytometry / microplate reader / tissue samples
Blue cellular senescence detection dye for fixed cells,  SPiDER Blue
Application Note (click to open/close)
  > Accurate Measurement for Lysosomal pH changes

With existing reagents, it was difficult to determine whether lysosomal mass or their function (pH) fluctuated because the discussion was based on changes in the fluorescence brightness of a single dye. This kit contains pHLys Green, which is highly specific to lysosomes and shows pH-dependent changes in fluorescence, and pH-resistant LysoPrime Deep Red. Using these two dyes, lysosomal pH and volume of the same sample can be measured for a detailed analysis of lysosomal function.

 Existing lysosomal pH detection reagents have issues with dye localization, pH sensitivity, and retention. pHLys Green is a dye that solves these issues. The improved dye retention and localization enable detection of normal lysosomes, and the improved pH sensitivity enables detection of slight pH changes.
1. High sensitive pH detection
Comparison of pH response of cells treated with low concentrations of lysosomal acidification inhibitor Bafilomycin A1
2. High specificity for lysosomes
Comparison of specificity for lysosomes using lysosomal marker protein LAMP1-GFP expressing cells
3. High retention in lysosomes
Comparison of intracellular retention

Product in Use:
   - Lysosomal Acidic pH Detection Kit-Green/Deep Red

Related Product:
   - Lysosomal Acidic pH Detection Kit-Green/Red
   - LysoPrime Deep Red - High Specificity and pH Resistance
   - pHLys Red - Lysosomal Acidic pH Detection

 

Why is Lysosomal Function Important?

Lysosome has been revealed to be an important organelle with a complex role in nutrient sensing and multifaceted signaling. Its importance has been emphasized in research fields as diverse as a neurological disease, cancer, immunity, and senescence. Recent research reveals that lysosome acidification declines in neurons well before extracellular amyloid deposition, thus lysosomal function is now a hot topic in Alzheimer's disease research.   Master the Basics with a Overview Map!
      
(Click to open)

What is Lysosome?

Lysosome Lysosomes are essential for maintaining cell homeostasis by degrading and recycling biomolecules, regulating organelle quality control, and facilitating intracellular signaling. Lysosomal function is closely linked to the Golgi apparatus, endoplasmic reticulum, mitochondria, and nucleus, coordinating cellular metabolism and stress responses. When lysosomal function is impaired, damaged proteins and organelles accumulate, metabolic processes are disrupted, and cell membrane integrity is compromised, leading to various diseases. For example, in neurodegenerative diseases, lysosomal dysfunction leads to the accumulation of toxic aggregates, resulting in neuronal damage and cognitive decline. Understanding lysosomal regulation and its interactions with other organelles is critical for developing therapies to slow disease progression and promote cellular longevity.

How to Analyze Lysosomal Function?

 When conventional dyes are used to analyze lysosomal function, it is difficult to determine whether the lysosomal mass or their function (pH) has changed because the analysis is based only on the fluorescence intensity of a single dye.
 Dojindo's kits contain two types of dyes: pHLys Red/Green, which shows a lysosomal pH-dependent change in fluorescence intensity, and LysoPrime Green/Deep Red, which is lysosomal pH-resistant. By combining these two dyes, the lysosomal function can be analyzed in detail by simultaneously analyzing lysosomal mass and pH. 

Lysosome Staining Reagents and Kits

Explore Dojindo's wide range of lysosomal staining and pH detection dyes. Choose the following kit or reagent that aligns with your experimental requirements.

Product Name
(Item Code)
Supported Devices Indicator and Detection Color Dyes and
Fluorescence Properties
Approximate Number
of Use
Lysosomal Acidic pH Detection Kit-Green/Deep Red (L268) pH pHLys Green
Ex: 488 nm / Em: 490-550 nm
[for 1 set]
35 mm dish: 10 dishes
μ-Slide 8 well: 10 plates
96-well Plate: 2 plates
quantity LysoPrime Deep Red
Ex: 633 nm / Em: 640-700 nm
Lysosomal Acidic pH Detection Kit-Green/Red (L266) Need G/Y Laser
G:532 nm
Y:561 nm
pH pHLys Red
Ex: 561 nm / Em: 560-650 nm
quantity LysoPrime Green
Ex: 488 nm / Em: 500-600 nm
pHLys Red- Lysosomal Acidic pH Detection  (L265) pH pHLys Red
Ex: 561 nm / Em: 560-650 nm
[for 1 tube]
35 mm dish: 10 dishes
μ-Slide 8 well: 10 plates
96-well Plate: 2 plates
LysoPrime Deep Red - High Specificity and pH Resistance  (L264) quantity LysoPrime Deep Red
Ex: 633 nm / Em: 640-700 nm
LysoPrime Green- High Specificity and pH Resistance  (L261) quantity LysoPrime Green
Ex: 488 nm / Em: 500-600 nm
[for 10 μl]
35 mm dish: 10 dishes
μ-Slide 8 well: 10 plates
96-well Plate: 2 plates

 

 

Experimental Example: Effect of lysosomal acidification inhibitor on endocytic vesicle fusion with lysosome

Endocytic vesicles were labeled by ECGreen and the lysosomal mass and pH were detected separately with LysoPrime Deep Red and pHLys Red. Co-staining with ECGreen and Lysosomal dyes showed the inhibition of endocytic vesicle-fusion induced by Bafilmycin A1.

 

Experimental Example: Effect of mitochondrial inhibitors on lysosomal function

CCCP and Antimycin are recognized inducers of mitochondrial ROS, linked to the loss of mitochondrial membrane potential. Recent studies have shown that CCCP induces not only mitochondrial ROS but also lysosomal dysfunction. To observe mitochondrial ROS, HeLa cells were labeled with MitoBright ROS Deep Red for Mitochondrial Superoxide Detection, and the lysosomal mass and pH were independently detected with LysoPrime Green and pHLys Red. Co-staining with MitoBright ROS and Lysosomal dyes revealed that CCCP, unlike Antimycin, triggers concurrent lysosomal neutralization and mitochondrial ROS induction.

Reference: Benjamin S Padman, et. al., Autophagy (2013)

Products in Use
   - LysoPrime Green
   - pHLys Red
   - Lysosomal Acidic pH Detection Kit
   - MitoBright ROS Deep Red - Mitochondrial Superoxide Detection

Related Products
   - Mitophagy Detection Kit and Mtphagy Dye

Experimental Example: Measurement of intracellular iron changes and lysosomal pH changes

In neurodegenerative diseases, the relationship between lysosomal function and iron has attracted attention, and it has been reported* that lysosomal neutralization prevents the breakdown of iron stores (Transferrin or Ferritin), resulting in a decrease in intracellular iron.
Lysosomal pH changes and intracellular iron changes in the same sample were detected using SH-SY5Y cells supplemented with lysosomal acidification inhibitor (Bafilomycin A1) or iron chelator (Deferipron (DFP)). (Lysosomal pH: Lysosomal Acidic pH Detection kit - Green/Deep Red, Intracellular iron: FerroOrange [Code:F374])
The results showed that the addition of Bafilomycin A1 decreased the fluorescence of FerroOrange, confirming the decrease in intracellular iron. The fluorescence of LysoPrime DeepRed remained almost unchanged, while the fluorescence of pHLys Green decreased due to lysosomal neutralization. These results suggest that there is a relationship between changes in intracellular iron and lysosome function.

*Mol Cell., 202077(3), 645-655.

         

<Condition>
pHLys Green (Green) : Ex=488 nm, Em=486-574 nm
FerroOrange (Red) : Ex=561 nm, Em=550-650 nm
LysoPrime Deep Red (Violet) : Ex=633 nm, Em=599-700 nm

 

 


 


 

Product Classification

Product Classification