Track the dynamics of plasma membrane

The plasma membrane (PM) separates the intracellular environment from the extracellular space and protects the cells from the extracellular environment. The PM plays important roles in selective permeation or signaling between cells etc. Observing the dynamics of the PM is useful in various research field.

Select reagents by the purpose of experiment

Product Size Product Code
Visualization of Cell membrane Plasma Membrane Staining Dyes
PlasMem Bright Green100 µl x 1P504
PlasMem Bright Red100 µl x 1P505
Note: <The number of assays> 1 tube (100 µl), 10 assays at 35 mm dish, 10 assays at μ-Slide 8 well
Visualization of Endocytosis Endocytosis Detection Dye
ECGreen-Endocytosis Detection40 µl x 1E296
Note: <The number of assays> 1 tube (40 µl), 20 assays at 35 mm dish, 20 assays at μ-Slide 8 well
Visualization of Exosome Exosome Membrane Fluorescence Labeling Kits
ExoSparkler Exosome Membrane Labeling Kit-Green5 samplesEX01
ExoSparkler Exosome Membrane Labeling Kit-Red5 samplesEX02
ExExoSparkler Exosome Membrane Labeling Kit-Deep Red5 samplesEX03
Exosome Protein Fluorescence Labeling Kits
ExoSparkler Exosome Protein Labeling Kit-Green5 samplesEX04
ExoSparkler Exosome Protein Labeling Kit-Red5 samplesEX05
ExoSparkler Exosome Protein Labeling Kit-Deep Red 5 samplesEX06
Note:  Protein amount : 1-10μg/ sample, Particle count : 10 to 100 x 108 /samples (As purified exosome using ultracentrifugation)

~ Features ~
– Applicable to live and fixed cells
– High retentivity of reagents with low toxicity
– Just add reagents into medium

Nuclear (Blue), Mitochondria (Red), Plasma Membrane (Green)

Low toxicity, No washing, and High retentivity

Comparison with other products

Experimental Examples

PlasMem Bright Series has low cytotoxicity, and high membrane retention of dyes and can be used in various experiments using live and fixed cells.

Clear visualization of plasma membrane

Observe morphology of neuron (differentiated SH-SY5Y cells) and localization of mitochondria in axon.

High retentivity on plasma membrane

HeLa cells stained with each plasma membrane staining reagent were incubated for 24 hrs and each the resulting fluorescent image was compared. PlasMem Bright series had higher retentivity in plasma membrane than other products.


Track endosome

~ Features ~
– Precise visualization of endocytosis
– Track endocytosis using live cells
– High responsiveness to pH change

ECGreen is a pH dependent fluorescence dye that localizes to vesicle membrane. The visualization of endocytosis using the ECGreen is a more direct method than fluorescent analogs and allows visualization endocytosis from the stage of early endosomes.

Stain vesicle membrane precisely

Other companies (a fluorescent analog): intravesicular staining

Fluorescent Dye-Dextran Conjugates or membrane staining reagents are used to visualize endocytosis. However, they have limitations in observing dynamics of endosomes in live cells in terms of precision of staining or retentivity of reagent. ECGreen is the reagent that over comes the limitations.

Clear visualization of intracellular vesicular trafficking

It has been known that Wortmannin inhibits the recycling of endosomes or transition to lysosomes and causes enlargement of endosomes. To evaluate these changes caused by Wortmannin, early endosomes were co-stained by ECGreen and Rab5-RFP (marker protein of early endosomes), and lysosomes were co-stained by ECGreen and lysosome staining reagent. In adding Wortmannin, ECGreen was colocalized with enlarged endosomes (Rab5-RFP). On the other hand, ECGreen wasn’t colocalized with lysosomes.


Exosome Membrane/Protein Fluorescence Labeling Kit

~ Features ~
– Not allow extracellular aggregation
– Cover steps from fluorescence labeling to purification
– Little effect on exosome properties

Recent findings suggest that exosomes, a form of extracellular vesicle (EV), contribute to malignant transformation and the metastasis of cancer. Consequently, intercellular communication via exosomes is attracting considerable interest in the scientific community.
To shed light on such communication, labeling techniques based on fluorescent dyes have been used. Fluorescent dyes that label the cellular membrane are commonly used for exosome labeling because the lipid bilayer in exosomes is a good target for labeling.

ExoSparkler series does not allow extracellular aggregation

Exosomes stained with ExoSparkler’s Mem Dye-Deep Red or an alternative product (green or red) were added to each well containing HeLa cells. The labeled exosomes taken into HeLa cells were observed by fluorescent microscopy. As a result, extracellular fluorescent spots suspected of dye aggregations were seen in each well containing the exosomes stained with the alternative product (green or red).

<Detection Conditions>
Mem Dye-Deep Red (Purple): Ex 640 nm/Em 640-760 nm
Alternative Product “P” (Green): Ex 561 nm/Em 560-620 nm
Alternative Product “P” (Red): Ex 640 nm/Em 650-700 nm

Mem Dye-Deep Red and Product “P” (Green and Red) in aqueous solution were analyzed by NTA (nanoparticle tracking analysis) to investigate the generation of aggregates. No aggregation was observed in the experiments with Mem Dyes, although Product “P” (Green and Red) produced dye-to-dye aggregates (100–500 nm size).
Instrument: LM10-HSBFT 14 (Nanosight)

In Mem Dye-Green, Red, the aggregation of the dye was not confirmed as in Mem Dye-Deep Red.

Commonly used exosomal membrane dye can cause dye aggregation, exhibiting fluorescent spots that are not derived from exosomes. These dyes can also change the functional properties of exosomes while increasing the background imaging.1,2
The dyes used in ExoSparkler series (Mem Dye-Green, Red, and Deep Red) do not cause aggregation and have little influence on properties of exosomes, allowing a more accurate observation of exosome dynamics.
1) Mehdi Dehghani et al., “Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.
2) Pužar Dominkuš P et al., “PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.” Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.

Our ExoSparkler Exosome Membrane Labelling Kits provide everything from fluorescence labeling to purification

ExoSparkler series contains filtration tubes available for the removal of dyes unreacted after fluorescence labeling, as well as an optimized protocol for labeling exosomes. Our ExoSparkler series makes it possible to prepare fluorescence labeling of exosomes using the simple procedure.

Comparison of purification methods (removal of unlabeled dyes)

The filtration tubes used to remove unlabeled dyes in this kit can purify exosomes at a higher recovery rate than gel filtration methods.

For the effectiveness of purification using filtration tubes, please see Q&A.
(The filter is colored in the purification after the labeling, Have unlabeled dyes been removed?)

Mem Dyes have little effect on exosome properties

NTA (nanoparticle tracking analysis) and zeta potential were measured to determine the changes in exosomes of dye-stained with Mem Dye-Deep Red or Product “P” (green or red) or unstained exosomes.
As a result, the Mem-Dye series (green, red, deep red) had little effect on exosome properties.

Effect of the dyes on the particle size of the exosomes

Exosomes were stained with Mem Dye-series (green, red, deep red) and Product “P” (green and red) at a dye concentration of 10 μmol/L in DMSO, the NTA (nanoparticle tracking analysis) of the stained exosomes (as 10 µg protein) was measured.
As a result, Mem Dyes-series did not change number and particle size of the exosomes (bottom left). Conversely, the Product “P” stained exosomes showed the significant changes of particle size and population of the exosomes (bottom right).
Instrument: LM10-HSBFT 14 (Nanosight)

Effect of the dyes on the zeta potentials of the exosomes

Exosomes were stained with Mem Dye-series (green, red, crimson) and Product “P” (green and red) at a dye concentration of 10 μmol/L in DMSO, the zeta potentials of the stained exosomes (as 10 µg protein) was measured.
As a result, product “P”-stained exosomes have lower zeta potential than Mem Dye-stained.
Instrument: Zetasizer Nano ZSP (Malvern Panalytical)

Observethetime-dependent changes in exosome localization

<Experimental conditions>
Exosomes purified by ultracentrifugation (10 µg as protein amount) were stained with Mem Dye-Deep Red (Exosome Membrane Fluorescence Labeling Kit) and added to HeLa cells (1.25×104 cells) stained with lysosome staining dye. The fluorescence images were observed after 1 h and 4 h incubation.
As a result, it was confirmed that the fluorescence puncta (purple) of Mem Dye-Deep Red overlapped with the localization of lysosomes (green) over time (white), and that the localization of exosomes changed in a time-dependent manner.

<Detection Conditions>
Mem Dye-Deep Red (Purple): Ex 640 nm/Em 640-760 nm
Lysosome staining dye: Ex 488 nm/Em 490-540 nm

COVID-19 Announcement

Due to rising concerns regarding the COVID-19 (Coronavirus 2019) outbreak, Dojindo Molecular Technologies, Inc will be taking the necessary steps to prioritize public health and safety.

Scroll to Top