Observe exosome dynamics accurately without extracellular aggregation

Cover steps from fluorescence labeling to purification

*Protein amount : 1-10μg/ sample, Particle count : 10 to 100 x 108 /samples

(As purified exosome using ultracentrifugation)

 


Storage Condition: Store at 0-5oC
Shipping Condition: ambient temperature

Product Description

Exosomes are a form of extracellular vesicle (EV), which could contribute to malignant transformation and the metastasis of cancer. Consequently, intercellular communication via exosomes is attracting considerable interest in the scientific community. To shed light on such communication, labeling techniques based on fluorescent dyes have been used. Fluorescent dyes that label the cellular membrane are commonly used for exosome labeling because the lipid bilayer in exosomes is a suitable labeling target. ExoSparkler series can be used for staining of purified exosomal membrane or protein, which allows imaging of labeled exosomes taken up by cells. 



ExoSparkler series enables you to observe exosome dynamics more accurately.

Commonly used exosomal membrane dye can cause dye aggregation, exhibiting fluorescent spots that are not derived from exosomes. These dyes can also change the functional properties of exosomes while increasing the background imaging.1,2
The dyes used in ExoSparkler series (Mem Dye-Green, Red, and Deep Red) do not cause aggregation and have little influence on properties of exosomes, allowing a more accurate observation of exosome dynamics.
1) Mehdi Dehghani et al., “Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size”.bioRxiv., 2019, doi:10.1101/532028.
2) Pužar Dominkuš P et al., “PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles.” Biochim Biophys Acta Biomembr., 2018, doi: 10.1016/j.bbamem.2018.03.013.




ExoSparkler series does not allow extracellular aggregation

Exosomes stained with ExoSparkler's Mem Dye-Deep Red or an alternative product (green or red) were added to each well containing HeLa cells. The labeled exosomes taken into HeLa cells were observed by fluorescent microscopy. As a result, extracellular fluorescent spots suspected of dye aggregations were seen in each well containing the exosomes stained with the alternative product (green or red). 

Experimental conditions

Exosomes were purified by ultracentrifugation (10μg exosome protein) and stained with each dye. Labeled exosomes were added to HeLa cells (1.25×104 cells), and the cells were incubated for 24 hours. Cells were washed, and immunofluorescence images showing labeled exosomes were observed.

Detection conditions

Mem Dye-Deep Red(Purple): Ex 640nm/Em 640-760nm

Alternative Product "P" (Green): Ex 561nm/Em 560-620nm

Alternative Product "P" (Red): Ex 640nm/Em 650-700nm



Our ExoSparkler Exosome Membrane Labelling Kits provide everything from fluorescence labeling to purification

ExoSparkler series contains filtration tubes available for the removal of dyes unreacted after fluorescence labeling, as well as an optimized protocol for labeling exosomes. Our ExoSparkler series makes it possible to prepare fluorescence labeling of exosomes using the simple procedure.



ExoSparkler series product comparison




Experimental conditions

Exosomes were purified by ultracentrifugation (10μg exosome protein) and stained with each dye. Labeled exosomes were added to HeLa cells (1.25×104 cells), and the cells were incubated for 24 hours. Cells were washed, and immunofluorescence images showing labeled exosomes were observed.

Detection conditions

Green: Ex 488nm/Em 490-540nm

Red: Ex 561nm/Em 570-640nm

Deep Red: Ex 640nm/Em 640-760nm

Item # Description/Size Availability Qty Break Price Quantity
EX03-10
Deep Red (5 samples)
1-2 business days 1 $250.00

*Your estimated shipping date is calculated based on production, payment method, destination, and your shipping option.
For Research Use Only Products